



Abstract— The CyberWorkstation (CW) is an advanced

cyber-infrastructure for Brain-Machine Interface (BMI)

research. It allows the development, configuration and

execution of BMI computational models using high-

performance computing resources. The CW’s concept is

implemented using a software structure in which an

“experiment engine” is used to coordinate all software modules

needed to capture, communicate and process brain signals and

motor-control commands. A generic BMI-model template,

which specifies a common interface to the CW’s experiment

engine, and a common communication protocol enable easy

addition, removal or replacement of models without disrupting

system operation. This paper reviews the essential components

of the CW and shows how templates can facilitate the processes

of BMI model development, testing and incorporation into the

CW. It also discusses the ongoing work towards making this

process infrastructure independent.

I. INTRODUCTION

RAIN-machine Interfaces (BMIs) are a promising

technology for restoring communication and control to

those with diseases or dysfunction of the nervous system.

The objective of BMI research is to understand the mapping

from a brain’s neural activity to behavior in order to produce

commands to control artificial limbs. To discover unknown

aspects of systems-based neural encoding and decoding for

complex tasks, computationally challenging real-time

modeling is needed to understand the interactions between

multiple brain subsystems, learning and behaviors [1].

Toward this goal, we created an experimental test bed,

called the BMI CyberWorkstation (CW), distributed across

two research laboratories in the University of Florida (UF)

campus to provide the necessary resources, create parallel

execution environments and guarantee the real-time

response needed for low latency sensorimotor control. In

our previous work [1,2], we have demonstrated how BMI

control schemes (Recursive Least Square and Reinforcement

Learning based BMI) can be implemented and tested in

online and offline closed-loop experiments on the CW.

Significant speed improvement in experiment execution has

been observed when compared to the performance that can

be achieved in a typical neurophysiology lab setting.

This work is supported in part by the National Science Foundation under

Grant No. CNS-0540304, CNS-0821622 and the DARPA project N66001-

10-C-2008. The authors also acknowledge the support of the BellSouth
Foundation.

1 University of Florida, Gainesville, Florida, USA, 32610.
2 Florida International University, USA.
3 ETHZ, Zurich, Switzerland.

In this paper, we present the CW’s software techniques

that enable its versatility in supporting BMIs using single or

combinations of models (e.g. mixture of experts).

Improvements of the model development framework are also

discussed. This framework allows rapid creation, evaluation

and integration of new BMI models, and in addition

facilitates the maintenance of the CW.

This paper is organized as follows. Challenges in building

infrastructure to support closed-loop BMI experiments are

discussed in Section II. Section III overviews the CW

architecture. The BMI-model template and the CW’s

experiment engine are described in Section IV. Section V

presents improvements of the BMI model development

framework. Section VI concludes on the importance of a

flexible software development framework for BMI research.

II. CHALLENGES OF REMOTE CLOSED-LOOP BMI

EXPERIMENTS

The working of a typical closed-loop BMI can be divided

into three phases that occur periodically: data acquisition,

data processing and prosthetic control.

The data acquisition senses in-vivo brain signals; a feature

commonly used to quantify these signals is single-unit action

potentials or ―spikes‖ [3]. Analog-to-digital conversion and

online digital signal processing (DSP) are required to detect

spikes, and a sorting algorithm categorizes spikes according

to the individual cells that produce them. The management

of this phase is non-trivial because of the drastically varying

complexity of real-time DSP computation, which depends

on the type of neural data and neuro-scientific research

purpose [4].

Next, the sorted spike train must be decoded using a model

that translates patterns of neural data into the appropriate

motor-control commands in the data processing phase. For

complex neurological tasks, such as arm and hand

movements in 3-dimensional space, an ensemble of

concurrent movement models may be used instead of a

single complex model [5]. Efficient parallel model execution

in the cyber-infrastructure then becomes mandatory.

Neural decoding output may be used directly as control

commands for a prosthetic device or serve as high-level

(abstract) instructions for a set of low-level controllers.

Signals that capture the behavior of the prosthetic device

(e.g. its trajectory end position), and resulting environment

changes (e.g. object displacement) are provided as feedback

to the live subject and brain models. This enables the subject

to decide on future actions and the models to learn or adapt

online, completing the closed-loop BMI operation.

Model Development, Testing and Experimentation in a

CyberWorkstation for Brain-Machine Interface Research

Prapaporn Rattanatamrong
1
, Andréa Matsunaga

1
, Pooja Raiturkar

1
, Diego Mesa

1
, Ming Zhao

2
, Babak

Mahmoudi
1
, Jack DiGiovanna

3
, Jose Principe

1
, Renato Figueiredo

1
, Justin Sanchez

1
, and José Fortes

1

B

Overall, the time taken by each BMI cycle includes the

time taken by the above-described phases plus the time

needed for communication among the tasks. In the general

case, the locations of the data acquisition, data processing

and prosthetic device can be distinct; potentially introducing

significant communication delays that can violate real-time

requirements of ongoing experiments when efficient and

reliable network communication mechanisms are absent.

The CW has been successfully used to conduct online and

offline closed-loop BMI experiments that include in vivo

data acquisition (in online experiments), reliable network

communication with error checking and buffering

mechanisms, parallel computation of models, and real-time

robot control. Details of the CW mechanisms and case

studies can be found in [1] and [2].

III. ARCHITECTURE OF THE CW

Fig. 1 summarizes the CW’s architecture. The client-side

CW, usually situated in a Neurophysiology laboratory, is

responsible for data acquisition and prosthetic control.

Through a high-speed network, the brain-activity data and

necessary sensory feedback collected in the client side are

transferred to the server side. The server-side CW, hosted in

a Computing laboratory, processes the received data and

returns the results back to the client-side CW for prosthetic

control.

The client-side CW includes BMI subjects, instrumental

resources (e.g. implant electrodes, sensors, DSP devices,

etc.) and a client program of the CW’s experiment engine.

The client program provides coordination between the CW

and BMI models during data acquisition and prosthetic

control. The server-side CW consists of computational

resources (e.g. computing units and data storage),

middleware and graphical user interfaces. A portlet-based

portal provides CW functionality through easy-to-use

interfaces while hiding the complexity of the middleware.

The middleware has an application layer and a service

layer. The application layer contains all supported BMI

models—abstracted from the middleware’s service layer by

a model template described in Section IV.A. The service

layer provides the following modules.

 User Management enables user authentication and

authorization.

 Logging and Monitoring provides statistics and

information about jobs and resources for other modules.

 Resource Reservation and Allocation assign necessary

resources to efficiently run experiments.

 Server-side Experiment Engine launches and manages

the experiments’ data processing phase.

 Model Integration facilitates addition of newly

developed models into the CW.

 Network Transfer enables reliable real-time data

communication between the client and server sides.

 Data Management organizes safe and easy-to-retrieve

data storage of experiments for post-processing.

 Tools for data visualization, analysis and group

collaboration enable follow-up reviews and studies of

experiments and knowledge sharing among researchers.

In the following section, we focus on the components of

the architecture that 1) allow various developers to

conveniently contribute their models and 2) enable users to

re-use BMI models in online and offline studies.

IV. THE CW’S SOFTWARE TECHNIQUES

The CW is designed so that it can be re-used for different

types of BMI experiments, eliminating the overhead of re-

building the software infrastructure needed for every BMI

research experiment. The key is to allow flexible and

efficient reconfiguration of the CW so that different models

Fig. 1. The conceptual architecture of the BMI CyberWorkstation

can be easily ―plugged in‖. The CW offers a ―plug-and-

play‖ experiment engine and enables the generalization of

models by using a BMI-model template.

A. Generic BMI Model Template

The BMI model template, as shown in Fig. 2, consists of

the model structure and the parameter interface. The model

structure defines necessary subroutines corresponding to the

previously described phases in BMI experiments (e.g. data

acquisition, data processing and robotic control) and other

management routines (e.g. initialization, loading input and

cleanup, etc.) with deferred implementation. The BMI Code

Library makes available useful subroutines that can help

developers to rapidly implement their models by reusing

code. These subroutines have clearly defined input and

output arguments and can be included as inline code in any

BMI model implementation. For a given subroutine, BMI

developers can provide their own code or reuse code from

the library. The parameter interface is a set of parameters

that the experiment engine needs in order to communicate

with the model. The model-specific static and dynamic

parameters are separated from the model code in parameter

files, providing an easy way to test and modify

constants/parameters and compare BMI models with

different parameter settings.

 The BMI template, defined in C++, allows different

modeling approaches, which may require different inputs

and outputs, to be implemented in BMI models but still be

accessible by the experiment engine through the same

subroutine calls and parameter names. The template offers

easy model integration and maintenance since the model

code is decomposed into a set of small, highly independent,

closed subroutines, which can be called from another

subroutine and can be separately compiled. Hence, this

simplifies readability and ease of testing.

The CW provides a code package that includes the model

template, the code library and a blank model for new model

development. Developers provide the implementation in

subroutines according to the template; the CW can guarantee

that the models will communicate and interact correctly with

other components in the system.

B. Plug-and-Play Experiment Engine

The experiment engine is a client/server program. It

coordinates BMI models and middleware service modules,

needed to capture, communicate and process brain signals

and motor-control commands. As shown in Fig. 3, multiple

BMI models, such as RLS and RLBMI [1,2], and other

service modules can be simultaneously connected to the

experiment engine. This approach decouples all

functionalities of the CW from each other and from the

experiment engine, and allows these modules to be added or

removed from the system with minimal changes to existing

code of the experiment engine.

The experiment engine is implemented as a set of C++

programs with message-passing library calls. When a user

creates a new experiment in the CW, the middleware

automatically generates an experiment-run file containing all

necessary information (e.g. the experiment directory

location, names of selected models, etc.) for other

middleware modules and a job-submission request file. The

server-side experiment engine reads the experiment-run file

and submits the job request to instantiate parallel processes

to execute user-selected models in the CW’s computing

cluster. Then both the client-side and server-side experiment

engine set up necessary socket connections through the

Network Transfer module. During the experiment, the

engine interacts with BMI models using the model interface

and structure (as described in the previous section), uses the

Data Management module to record outputs, and provides a

graphical view of output data via the Data Visualization

module. Details of this interaction are shown in Fig. 3. An

asterisk next to the step numbers denotes that the steps

reiterate during a BMI experiment.

V. THE BMI MODEL DEVELOPMENT FRAMEWORK

In early versions of the CW, several parts of the model

code were coupled to the experiment engine, so it was not

easy to investigate alternative communication protocols or

approaches to improve the performance of the CW in

supporting real-time experiments. In addition to the

redesigned interface of BMI models to our CW code, as

presented in the previous section, we discuss in this section

further improvements of the BMI model development

framework.

A. Model Implementation

While BMI models developed in C++ can deliver efficient

codes necessary for peak performance in real-time

experiments, it is important to include an alternative

language for other developers who cannot conveniently port

their code to the language that they are not familiar with. To

address this need, the template and the experiment engine

have been extended to be compatible with BMI models

implemented in MATLAB, which is the most commonly

used language by the computational BMI research

community. Having direct access to this environment within

the CW will enable users to rapidly move from concept to

real-time experimentation.

Fig. 2. Generic BMI Model Template engine

We are integrating a simple source code editor that

provides a dual presentation of the BMI model code

structure and the source code for a user-selected subroutine.

This user interface facilitates automatic formatting of BMI-

model codes (such that it follows model template

specifications), and incorporates tools for developers to

easily include code from the code library into their code.

B. Model Testing

The CW’s administrator needs to facilitate the validation

and calibration of the new BMI model before its integration

into the production system. With increasing numbers of

developers, this process can become a bottleneck since it

generally needs iterations of code development, model

configuration, execution and analysis of model output.

To reduce development time, the new CW design allows

users to examine how well their model code works, using the

portal interfaces without intervention from the CW

administrator. The model integration module will generate

an automated testing unit which clones the experiment

engine with the new model plugged in. Test results become

available in the user’s workspace to validate correctness.

Direct model implementation and testing on the CW

increase model compatibility and, as a result, model

integration requires less effort.

C. Model Integration and Maintenance

With the use of the experiment engine and the model

template, the integration of new models and their

maintenance can be seamlessly done. Successfully tested

models can be submitted to the production site, along with

input and configuration files needed for integration. In the

future, the CW will provide a user interface that links with

the model testing procedure, which automatically generates

necessary files for a model submission request for users.

While the integration will still require the administrator’s

intervention, it will be minimal.

VI. CONCLUSIONS

This paper presents three innovations in the CW system

design, namely its software structure, the BMI model

template and the experiment engine used in the CW’s model

development framework. They enable the decoupling of the

logic of BMI models from the underlying infrastructure and

thus expedite the deployment of new models and

experiments by the system users, while minimizing CW

maintenance and management by system administrators.

The template allows users to easily create their model code

by re-parameterization and to instantiate appropriate

subroutines specified in the template. The experiment engine

offers a plug-and-play capability that allows different

models to be flexibly plugged in the CW. The portal

interface improvements assist and partially automate model

implementation, testing and integration. We believe that our

software techniques are key to the efficiency of the CW

since they enable models from different backgrounds and

approaches to be easily combined and linked to create new

and interesting possibilities in BMI research.

REFERENCES

[1] J. DiGiovanna, P. Rattanatamrong, M. Zhao, et al. ―CyberWorkstation
Architecture for Computational Neuroscience,‖ Frontiers in

Neuroengineering, 2009.

[2] M. Zhao, P. Rattanatamrong, J. Digiovanna, et al. ―BMI
cyberworkstation: Enabling dynamic data-driven brain-machine

interface research through cyberinfrastructure,‖ in Engineering in

Medicine and Biology Society, 2008. EMBC 2008. 30th Annual
International Conference of the IEEE, 2008, pp. 646–649.

[3] N. G. Hatsopoulous and J. P. Donoghue, The Science of Neural

Interface Systems, Annu Rev. Neurosci, 32, pp.249-266.
[4] M. S. Lewicki, ―A review of methods for spike sorting: the detection

and classification of neural action potentials.‖ Network (Bristol,

England),vol. 9, no. 4, November 1998.
[5] B. M. Yu, C. Kemere, G. Santhanam, et al. ―Mixture of trajectory

models for neural decoding of goal-directed movements,‖ J

Neurophysiol, vol. 97, no. 5, pp. 3763–3780, May 2007.
[6] Liferay portal framework. [Online]. http://www.liferay.com

Fig. 3. The simplified structure of the CW’s experiment engine

